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LETTER TO THE EDITOR 

q-deformed paracommutation relations 
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Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region 142092, 
Russia 

Received 3 lune 1992 

Abstnct. n e  representations of an algebra of q-deformed paracammutation relations are 
discussed. The Bose quantization is shown to be exceptional among all possible para-Base 
quantizations. Also it is demonstrated that the Ignatiev and Kurmin oscillator is a particular 
case of the q-deformed paraoscillator. 

During the past few years the theory of quantum groups and algebras [l, 21 has been 
intensively developed. The characteristic feature of these mathematical objects is an 
introduction of a deformation parameter q such that for q = 1 the usual groups and 
algebras are restored. This activity has stimulated the study of the deformations of 
commutation relations for various annihilation and creation operators including Bose, 
Fermi, para-Bose and para-Fermi types [3-71. In this letter we discuss the representa- 
tions of the algebra of operators satisfying the q-deformed paracommutation relations. 
This algebra is interesting in that it is 'intermediate' between the para-Bose and 
para-Fermi algebras [8,9]. 

The general aspects of paraquantization can be found in [9]. It is postulated that 
the annihilation and creation operators b and b' obey the following trilinear commuta- 
tion relationst: 

[b, [bt, b L I =  b [b t , [b t ,  b l , l = - b '  (1) 

where the upper (lower) sign corresponds to parafermions (parabosons). The rep- 
resentations of para-Fermi (para-Bose) algebra are (in)finite-dimensional. These 
representations are specified by negative (positive) half-integers which are the lowest 
energy levels for the Hamiltonian H,-[b', b],. 

The most natural way to build an object connecting para-Bose and para-Fermi 
oscillators is probably to deform the inner commutator. That is why we consider the 
trilinear commutation relations 

[a . [~ ' ,a l , ]=a  [a', [a', a] , ]  = -at (2) 

where a t  = (a)', [A, E], = AB - qBA and -1 S q 6 1. Obviously the .limiting cases 
q = -1 and q = 1 correspond to the para-Bose and para-Fermi quantizations respec- 
tively. As in the paper [6], we postulate that there exists at least one representation in 
which the spectrum of the Hermitian operator (Hamiltonian) JVS [a', a ] ,  is bounded 
below. It follows from (2) that this spectrum has the form N. = No+ n, n = 0, 1, . . . . 

t Here and below we consider only one oscillator 

0305-4470/92/191155+04$04.50 @ 1992 1OP Publishing Lid L1155 



L1156 Letter to the Editor 

So, consider a Hilbert space with basis vectors In) being the eigenvectors of N. In this 
representation the matrix elements of the annihilation and creation operators are [6 ] :  

(nlalm)=(mla+ln)= L , , ~ + ~ J R ~  (3) 

where 

No+m 
I ( n ) = -  L mfl 

m=o q 

1 - _  - [q"'*(N0+ n ) -  q'+'(N0+ n + 1) - q (  No- 1)+ No]. (4) q"+'(l-q) 

The parameter No determines the representation. Since the condition I ( 0 )  > 0 must be 
satisfied, it immediately follows that 

N,q < 0. ( 5 )  

Let, for some positive integer p, I ( p )  be zero, that is, the representation is given by 
finite matrices of size ( p +  1) x ( p  + 1). In this case No is determined from (4) and 
depends on p via: 

Substituting this into (4), one gets for the matrix element squared 

where n=O,1, . . . , p -  1 and the notation [n ;q]=( l -q") / ( l -q)  is used [IO]. It is 
not difficult to show that there are no singularities for q = 1 and the matrix elements 
coincide obviously with those for parafermionic creation and annihilation operators. 

Since for given q the representations of the algebra (2) are specified by a value of 
No, it is convenient to depict the possible representations by curves on a plane (q ,  No) 
(figure 1). Due to the condition (9, these curves are placed in I1 and 1V quadrants. 
From figure 1 one can see that the structure of the representations for positive and 
negative q is quite different. For arbitrary q6(0,1)  there are finite-dimensional rep- 
resentations of any order p > 1, and No is given by (6). In addition an  infinite number 
of infinite-dimensional representations exist, for which NOG - q / (  1 - q )  (shaded region 
on figure 1). For arbitrary q E  (-1,O) there are finite-dimensional representations of 
any even order, i.e. when p is odd. However, for even p the situation changes. The 
finite-dimensional representations exist only for p greater than some po. This integer 
is determined from the inequality 

q (  Po)  < 4 < d P 0  - 2 )  (8) 

where q ( p )  is the root of the polynomial 

P(q, p ) = p q P + ' - ( p +  1 ) q P f l  (9) 
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Figure 1. Each curve corresponds to a representation of the algebra (2). Shown are a few 
finite-dimensional representations only, the dimension of representation p being indicated 
by an integer. Curve No = - q / ( l  - q )  is denoted by i, The shaded region corresponds to 
infinite-dimensional representations. 

in the interval (-1,O). For even p the polynomial P(q, p) has only one simple root in 
this interval and q ( p )  < q(p -2). We have not succeeded in deriving an explicit formula 
for q ( p )  in the general case, so only the two biggest roots are given here: 

q(2) = -+ 
(10) 

q( 4) = -A[ (1 5(4&+ 9))’13 - ( 15( 4& - 9))’”] - a  -0.606. 

Contrary to the case of positive q, for q < O  there is only one infinite-dimensional 
representation which is determined by the following dependence of No on q :  

(this value of No is obtained from (6) in the limit p + m). For q + -1 this representation 
becomes the canonical one for the Bose oscillator. Here we note a striking difference 
between limits q + l  and q+-1. Taking the first limit one obtains all parafermionic 
representations, while in the second case only one of an infinite number of representa- 
tions is obtained. Thus, the Bose quantization proves to be exceptional among all 
possibilities which correspond to  the para-Bose quantization. 

The value q = O  is also peculiar. Although the formula (4) was derived in [6] 
excluding this q and is singular at first sight, equation (7) shows that there are no 
divergences for q = 0. For this q the matrix elements do not depend at all on the 
dimension of representation; are given by 

I$,(n)=n+l .  (12) 
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During the past few years the search for possible violation of the Pauli exclusion 
principle (PEP) has been intensively discussed [11-17]. This activity was initiated to a 
large extent by Ignatiev and Kuzmin ( I K )  [ l l ]  where the model of the non-usual 
fermionic oscillator was proposed. In this model two fermions are allowed to be in 
the same state with a small probability pz<< 1 while the PEP strictly forbids it. It tums 
out that the annihilation (creation) operators ulK(aTK) introduced by IK are just the 
above described q-deformed operators represented by 3 x 3 matrices. More definitely, 
I U C i  1c1L"""JL"p LJ U l G  r"rl"wrrr& *La -e,,..:,.--t.:- :" .l." F-I, :--. 

where the matrix elements squared of a are given by equation (7) for p = 2. It is seen 
that the limit /3 + O  when the IK oscillator becomes the ordinary fermionic one corres- 
ponds to q + q(2) .  

It is well known that the para-Fermi oscillator of order ( N  - 1) describes the N-level 
system [9]. The finite-dimensional representations of q-deformed paracommutation 
relations can be used to present the multi-level systems as well. In this approach the 
phenomenon of a decreasing number of levels appearing in the IK oscillator at /3+0 
has an analogue in multi-level systems. Consider the representation of algebra ( 2 )  by 
N x N matrices where N = 2k + 1. If q > q ( N  - 1) then this representation corresponds 
to an N-level system. But for q = q ( N - 1 )  the polynomial P(q, N - 1 )  vanishes, and 
since I P ( 0 ) o c P ( q , p ) ,  then IN- ' (0)  vanishes and the N-level system becomes the 
(N-I)-level one. In addition, for this value of q the equality I N - ' ( n ) = I N - 2 ( n - l )  
holds. 

Valuable discussions with Dr V V Semenov are cordially acknowledged. 
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